

Thin films and multilayers for spintronics deposited by a CVD-ALD process

R. Mantovan, A. Lamperti, M. Georgieva and M. Fanciulli* Laboratorio Nazionale MDM CNR-INFM, Agrate Brianza (MI), Italy *also at Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano, Italy

Abstract

Spin-based electronics (spintronics) is receiving significative interest, as it offers possible attractive solutions for the future information technology market [1]. Among the most competitive options for replacing and/or integrating the currently used non-volatile memories, the magnetoresistive random access memory (MRAM) is very promising. The core element in MRAMs is the magnetic tunnel junction (MTJ) [1]. Typically a MTJ consists of two ferromagnetic (FM) layers acting as electrodes separated by an oxide tunnel barrier: the magnetization of the soft electrode consitutes the storage information. Reading process is achieved through the sensing of two different perpendicular-to-plane resistances in the MTJ stack, depending on the relative orientation of the electrodes magnetization, parallel or anti-parallel configurations (tunnel magnetoresistance effect). The interest that major companies are manifesting in MRAMs motivates the development and optimization of thin films deposition methods capable of growing smooth, uniform and conformal FM layers and oxides for their inclusion into functional spintronic devices. We show our recent research efforts towards the use of atomic layer- and chemical vapour- deposition (ALD-CVD) methods for the fabrication of MTJs. We developed a simple, efficient, and cost effective deposition chamber for the growth of Co and magnetite (Fe₃O₄), by employing Co₂(CO)₈ and Fe₃(CO)₁₂ carbonyls precursors, while a conventional ALD reactor was used for the deposition of thin MgO films, in such a way that the fabrication of Fe₃O₄/MgO/Co stacks was achieved. We investigated the structure, morphology, chemical profiling, contaminations and magnetic behaviour of selected Co, Fe₃O₄, MgO films and Fe₃O₄/MgO/Co multilayers, by means of time of flight secondary ion mass spectroscopy (ToF SIMS), X-ray reflectivity (XRR), conversion electron Mössbauer spectroscopy (CEMS), and superconducting quantum interference device (SQUID) magnetometry. The magnetoresistance (MR) of Fe₃O₄ films reaches -2.4 % with an applied field of ± 1.1 T, being in accordance with the MR observed for magnetite films produced by sputtering [2]. [1] C. Chappert, A. Fert, and F. N. Van Dau, Nature 6, 813 (2007) - [2] J. M. Coey, A. E. Berkowitz, Ll. Balcells, F. F. Putris, and F. T. Parker, APL 72, 734 (1998)

CEMS

CEMS evidences the presence of two characteristic magnetically-split sextets related to the tetrahedral A site and the octahedral B site, characteristic of bulk magnetite. The Fe₃O₄ stoichiom. etry is deduced from the relative intensities of the sextets [3]: $(Fe^{3^+})_A (Fe_{0.8}^{2.5^+} Fe_{1.0}^{3^+} \Box_{0.2})_B O_4$

ToF SIMS

ToF SIMS depth profile of a typical Fe₃O₄/MgO/Co stack as produced with our CVD-ALD process. Co, MgO, and Fe₃O₄ layers are well distinct in the stack. Each layer is uniform and homogeneous as shown by the profile flatness. At the surface/sub-surface region Co is oxidized. No relevant contributions from precursors volatile components (such as C shown in figure) is revealed.

XRR

XRR measures MgO thickness of 6.5 nm with interface roughness of 2.4 nm (Co/MgO) and 3.9 nm (MgO/Fe₃O₄). Co top surface is 3.4 rough.

Thickness (nm)[±0.1]	Roughness (nm)[±0.1]	El.density (e ⁻ Å ⁻³)[±0.05]
28.0	3.4	2.26
6.5	2.4	1.17
16.1	3.9	1.44
∞(550nm)	0.4	0.807
	Thickness (nm)[±0.1] 28.0 6.5 16.1 ∞ (550nm)	Thickness $(nm)[\pm 0.1]$ Roughness $(nm)[\pm 0.1]$ 28.03.46.52.416.13.9 ∞ (550nm)0.4

For intergranular tunneling of the spin polarized electrons, the spin polarization can be deduced from the MR data [4]. Our Fe₃O₄ films show P~16%.

MR

-0.2 -

-0.4

SQUID

400

[3] F. C. Vogt *et al.*, Surface Science **331**, 1508 (1995) [4] J. Inoue and S. Maekawa, PRB **53**, R11927 (1996)

- MR up to -2.4 % at ±1.1 T

- Spin polarization P~16%

- Pure magnetite films (XRD) - Stoichiometry (CEMS) - Large coercivity (SQUID)

2θ (°) theoretically predicted half-The metallicity of magnetite, the notable difference in the coercivity values of the Co and Fe₃O₄ ferromagnetic electrodes and the overall good quality of the as deposited films and multilayers, suggest that

Fe₃O₄/MgO/Co

produced by the ALD-CVD method, is promising for the fabrication of wellperforming MTJs.

http://www.mdm.infm.it

