HEAT DISSIPATION EFFECTS ASSOCIATED WITH SPIN TRANSFER WRITING IN MRAM DEVICES

C. Papusoi, R. Sousa, J. Herault, I.L. Prejbeanu, Y. Conraux, K. Mackay, J.P.Nozières, B.Dieny

MOTIVATION

Joule heat dissipation that occurs during the application of current pulses of density $\sim 5 \times 10^{6} \mathrm{~A} / \mathrm{cm}^{2}$, as required for switching the magnetization of a free ferromagnetic layer by spin transfer effect, has not yet been quantitatively evaluated. Particularly important in case of Magnetic Tunnel Junctions (MTJ), the heating effect of a current pulse can reduce the switching current density, enhance the spin transfer-assisted magnetic noise and broaden the linewidth of the spin transfer-induced magnetization excitations. The calculation of the MTJ temperature profile during the application of a current pulse requires the knowledge of the thermodynamic parameters of the MTJ layers.

GOAL

Elaborate a model of heat diffusion in an MTJ stack that correlates the thermodynamic parameters of the junction layers (heat capacity, thermal conductivity) to a set of directly measurable quantities: (a) the cooling time constant $\tau_{T R}$ of the junction subsequent to the application of a current pulse; (b) the proportionality constant α between the power of the heating pulse and the stationary temperature reached by the junction layers during the application of a current pulse. Comparison between the theoretical and experimental values of $\tau_{T R}$ and α allows the "calibration" of the MTJ thermodynamic parameters.

Principle of MRAM-TAS

Experimental setup and measurement procedure

Exchange bias as temperature probe
$T_{A F}=T_{R T}+\alpha P_{H P}$
$\alpha=8.7 \times 10^{4} \mathrm{~K} / \mathrm{W}$

$\delta(\mathrm{s})$

1-D model of heat diffusion in the MTJ. Temperature regimes during the application of a current pulse.

3-D simulations (COMSOL) of heat diffusion in the MTJ

Time-domain study of the F/AF switching

CONCLUSIONS

1) Exchange bias of an F/AF bilayer can be used to probe the temperature of a film in contact with the F/AF bilayer
2) Switching of the F/AF does not appear to be instantaneous, leading to a time dependent coercivity of the F/AF bilayer.
3) During the application of a current pulse, two temperature regimes of the MTJ were evidenced: an initial transient regime (of width $3 \tau_{T R}$) followed by a stationary regime ($T=T_{R T}+\alpha P$).
4) The estimated values of thermal conductivities k and specific heat capacities c of the MTJ layers, based on the Widemann-Franz and Dulong-Petit laws, are reliable as suggested by the agreement between the experimental and theoretical values of $\tau_{T R}$ and α. The estimated k and c can be used for calculating the temperature profile of an arbitrary layer structure.

This work was supported by the European RTN SPINSWITCH, MRTN-CT-2006-035327.

