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HEAT DISSIPATION EFFECTS ASSOCIATED WITH SPIN
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of a current pulse.

MOTIVATION

/" Joule heat dissipation that occurs during the application of current
pulses of density ~ 5 x 10® A/cm?, as required for switching the
magnetization of a free ferromagnetic layer by spin transfer effect,
has not yet been quantitatively evaluated. Particularly important in case
of Magnetic Tunnel Junctions (MTJ), the heating effect of a current
pulse can reduce the switching current density, enhance the spin
transfer-assisted magnetic noise and broaden the linewidth of the spin
transfer-induced magnetization excitations. The calculation of the MTJ
temperature profile during the application of a current pulse requires
the knowledge of the thermodynamic parameters of the MTJ layers.

GOAL
Elaborate a model of heat diffusion in an MTJ stack that correlates
the thermodynamic parameters of the junction layers (heat capacity,
thermal conductivity) to a set of directly measurable quantities: (a) the
cooling time constant 11z of the junction subsequent to the
application of a current pulse; (b) the proportionality constant a
between the power of the heating pulse and the stationary
temperature reached by the junction layers during the application
Comparison between the theoretical
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experimental values of tz and o allows the “calibration” of the MTJ
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"\ thermodynamic parameters.
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1-D model of heat diffusion in the MTJ. Temperature
regimes during the application of a current pulse.
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Stage 1: Store layer magnetic moment
(red) is parallel to that of the
reference layer (black)

Stage 2: The device is heated by a
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layer magnetic moment is
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Experimental setup and measurement procedure
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3-D simulations (COMSOL) of heat diffusion in the MTJ
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Time-domain study of the F/AF switching
Prp = 0.84 mW -> 109 °C
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/ CONCLUSIONS N\

1) Exchange bias of an F/AF bilayer can be used to probe the temperature of a film
in contact with the F/AF bilayer.

2)Switching of the F/AF does not appear to be instantaneous, leading to a time
dependent coercivity of the F/AF bilayer.

3)During the application of a current pulse, two temperature regimes of the MTJ
were evidenced: an initial transient regime (of width 3tr) followed by a stationary
regime (T=Tyr+aP).

4)The estimated values of thermal conductivities k and specific heat capacities c of
the MTJ layers, based on the Widemann-Franz and Dulong-Petit laws, are reliable
as suggested by the agreement between the experimental and theoretical values
of 15 and a. The estimated k and ¢ can be used for calculating the temperature
profile of an arbitrary layer structure.
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