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ATOMISTIC SPIN DYNAMICS SIMULATIONS

Different length scales in magnetization dynamics Ll Mn doped GaAs as a case study
g/ ., Hellsvik et al. (submitted to PRB 2008)
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Finite temperature effects are treated within a
Langevin dynamics approach. The fluctuating

The autocorrelation is not directly measurable - but relates to

magnetic field is normal distributed with an amplitude the zero (low field) magnetic susceptibility in experiments Gii(t) = (my(t) - m;(t))
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