SPIN MOMENTUM TRANSFER – September 3 – 5, Kraków, Poland 2008

Electrical and micromagnetic characterization of magnetic disks and rings

¹Marius Volmer, ²Jenica Neamtu

¹Physics Department, Transilvania University, 29 Eroilor, Brasov 500036, Romania ² Advanced Research Institute for Electrical Engineering, Splaiul Unirii 313, Bucharest 030138, Romania

Magnetic thin films deposited onto oxidized Si wafers: - Ni₈₀Fe₂₀(10 nm) (Permalloy) – Py

- $FeMn(3 nm)/Ni_{80}Fe_{20}(10 nm)/Cu(4 nm)/Ni_{80}Fe_{20}(10 nm) ML$
- $-Ni_{80}Fe_{20}(2 \text{ nm})/Al_2O_3(1 \text{ nm})/Ni_{80}Fe_{20}(2 \text{ nm}) PyAIOPy$

SPINSW TCH

We made Planar Hall Effect measurements using a special setup [1] and micromagnetic simulations [2] in order to improve the response of these structures used for sensing applications in rotating magnetic fields $\rightarrow U \sim sin 2\theta$

(a) PHE experimental setup [1] and (b) the equivalent circuit [3]

0.22 Two measurements were 200 Oe 200 Oe 0.20 0.10 100 Oe 0.04 500 Oe made for each value of the (വ) I/N 500 Oe 200 Oe Pv 0.08 500 Oe angle θ : 0.03 500 Oe 0.16 0.06 0.02 I_1 ON and I_2 OFF \rightarrow U_1 ring shape I=1.00 mA 0.14 ට 0.04
ට 0.02 ୍ତ୍ର 0.01 0.150 I_2 ON and I_1 OFF \rightarrow U_2 5 0.00 (C) 0.145 ML Usually $I_1 = I_2$ ML -0.01 0.00 5 0.140 -0.02 The calculated signal is: -0.02 0.135 -0.03 ring shape square shape -0.04 PyAIOPy disk shape $\frac{U}{I} = 0.5 \left(\frac{U_1}{I} + \frac{U_2}{I} \right)$ 0.130 -0.04 100 150 200 250 300 350 50 250 300 350 200 50 100 150 50 150 300 350 100 θ (degrees) θ (degrees) θ (degrees)

contacts misalignments and hysteretic effects -> the angular behaviour of the PHE voltage is distorted

Micromagnetic simulations for disk and ring shape structures

|--|

Micromagnetic simulations for PyAIOPy disk shape structure

1100000	111111	112221
$/ / / / / / / \rightarrow \rightarrow \rightarrow /$	///////////////////////////////////////	<u> </u>
$1 1 1 1 1 2 2 2 \rightarrow \rightarrow \rightarrow \rightarrow 1$	11111111111	<u> </u>
////////////////////////////////////	1111111111111	///////////////////////////////////////
$ 1 1 2 2 \rightarrow \rightarrow \rightarrow 1 2 $		///////////////////////////////////////
N1111/ N111		
(N/)//		
H		
	1111	
1 \ 1 1	1 1 1 1 1	
/ \ / / \ H=100 Oe / / / / /	1 + 1 + 1 + H = 100 Oe + 1 + 1 + 1	H=100 Oe
$2 \times 1 \times 2 = 0 = 45^{\circ}$	$11117 \qquad \theta=90^{\circ} \qquad 11111$	\wedge / \wedge \wedge $\theta = 135^{\circ}$ \wedge \wedge \wedge \wedge
N//N//////////////////////////////////		
~11~12 7711111		
112200000111111	/1/1/2/////////////////////////////////	///////////////////////////////////////
12000000000000000	1 1 1 1 1 2 2 2 1 1 1 1 1	111111111111111
	~11111111	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 1	1122211	< < < < < < < < < < < < < < < < < < <

Micromagnetic simulations of the angular dependence of the magnetization and PHE signal for the PyAlOPy disk shape structure

Magnetic moments orientations in a Py ring shape structure for different field orientations

Comparative results of the micromagnetic simulations regarding the angular dependence of the magnetization and PHE signal in Py and ML ring shape structures. We can see clear hysteretic effects at low fields. The coupling between magnetic layers bring also additional distortions of the PHE signal. The arrows are guides for the eyes.

H>200 Oe for practical applications

0.0 -0.5 -1.0 ML 100 200 300 500 400 θ (degrees)

0.5

200 Oe

100 Oe

Magnetic moments orientations in a ML ring shape structure for different field orientations

Field dependence of the PHE signal for a ring-shape Ni₈₀Fe₂₀(10 nm) thin film; H is applied in the film at an angle θ =135°

