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Introduction & Motivation
Domain wall motion in Pt/CoFeB/Pt perpendicularly magnetized nanowires

is of particular interest due to the wide tuneability of the critical parameters 

governing its dynamics. 

• By tuning the CoFeB composition and thickness, the coercivity, 

anisotropy, damping parameter and pinning density can be varied.

• Pt/CoFeB/Pt shows narrow domain walls (~10 nm) [1], particularly 

interesting for current induced domain wall motion predicted to have 

a high non-adiabatic spin-torque transfer coefficient [2]. 

Coercivity

• By scanning a wedge shaped sample with MOKE we are able to obtain 
the coercivity versus thickness of the CoFeB layer.

• The coercive field increases with thickness, above ~0.9 nm the 
magnetization turns in plane.
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• The Barkhausen volume (Vb) is a direct  
measure for the pinning site density for 
magnetization reversal by domain wall 
motion [3].

• Vb can be determined by measuring the 
switching field (Hs) while varying the field 
sweep rate using MOKE and fitting the 
variation [4].

• For increasing boron content we see an 
increase of Vb indicating a lower density of 
pinning sites.

Measurement scheme and outlook
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• pulse width ~70 fs
• pump fluence ~1 mJ/cm2

• spot diameter ~8 μm

0 100 200 300 400 500
0.0

0.5

1.0

100 200 300 400 500

0.0

0.1

-Δ
M

z/M
z (

a.
u.

)

Delay (ps)

α ≈ 0.15

• Using a time resolved MOKE 
technique the gilbert damping 
parameter (α) can be determined.

• By applying a field at a certain 
angle (ψ) to the normal of the 
sample the magnetization 
precession after a pump pulse is 
recorded.

• By fitting the precession with the 
Landau Lifshitz Gibert equation we 
are able to determine the gilbert
damping.

• A large damping (α≈0.15) is not 
optimal for “viscous” domain wall 
motion but might provide valuable 
insight in the correlation between 
the domain wall velocity and the 
damping parameter.

Gilbert damping

V

Oscilloscope• EBL is used to define 100-500 nm 
wide nanowires and are contacted 
by UVL defined gold contacts.

• A large domain wall nucleation pad 
is used to create a domain wall 
which can then be pushed in the 
nanowire.

• By defining crosses in the nanowire
the extraordinary hall effect (EHE) 
be used as a local probe of the 
perpendicular magnetization 
direction.

• Steps can be seen in the hall 
resistance due to geometrical 
pinning when a domain wall passes 
through a cross [5].

• Time resolved measurements of the 
Hall resistance with an oscilloscope 
at different crosses in the wire is 
used to measure the average 
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