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Abstract

In ferromagnetic metals and magnetic semiconductors, the off-diagonal conductivity is proportional
to the external magnetic field, which is connected with ordinary Hall effect, and an additional term
which is proportional to the magnetization of the sample and does not disappear at zero magnetic field.
This extraordinary term is known as the anomalous Hall effect (AHE). The origin of the AHE is the
spin-orbit interaction in the presence of spin polarization. There are two groups of mechanisms that
are responsible for AHE: so called extrinsic mechanisms (skew scattering and side jump) and intrinsic
mechanisms which are related to the topology of electron energy bands.

We consider narrow-gap IV-VI magnetic semiconductors where the relativistic terms are not small and
determine both the non-parabolicity of the energy spectrum and strong spin-orbit interaction. We use
the relativistic Dirac model and the theory of linear response to calculate the topological contribution
to the off-diagonal anomalous Hall conductivity. We also present some experimental data.

Relativistic Dirac Model

The matrix form of the Hamiltonian is as follows:

H =

(

∆ − gcMσz v0 σ · k
v0 σ · k −∆ − gvMσz

)

, (1)

To calculate the topological contribution we start from
the general Kubo formula for ω 6= 0
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Contribution to the AHE conductivity from the Fermi surface

First, we calculate contribution to the anomalus Hall conductivity from states on the Fermi level. The
Kubo formula in this case may be written in the following form:

σxy =
e2v2

0

2πh̄
Tr

∫

d3
k

(2π)3

(

0 σx

σx 0

)

GR
k

(ε)

(

0 σy

σy 0

)

GA
k

(ε) (3)

Calculating the above integral, we get the expression for the Hall conductivity:

σxy = −
3Me2(2gε − g∗∆)

16π2v0h̄
(

ε2 − ∆2
)1/2

(4)

Figure 1: Hall conductivity from states at the Fermi surface in the case when the Fermi level is in the valence band as a function of

the paramter ∆ and impurity concentration N . The other parameters: v0 = 5 × 10−8 eV cm, gc = gv = g

Topological contribution to the AHE

The topological contribution may be calculated within the Kubo formula (2). After calculating the
trace in eq. (2) and taking the limit ω,M → 0 we get:
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where P0(ε) = dP (ε1, ε2)/dε2 |ε1,ε2=εis nonzero component of the Taylor expansion of P (ε1, ε2) which is equal to the trace of the numerator in

eq. (2)(ε1 = ǫ + µ + ω, ε2 = ǫ + µ) and ǫ0k = ±
(
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0k

2
)1/2

is the energy spectrum of the valence / conduction band in the limit of M = 0.

After integrating over ε we obtain:
σxy = σv

xy + σc
xy (6)

where σα
xy (α = v, c) is contribution from the valence and conduction bands
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The Fermi level is measured from the middle of the energy gap. Owing to the symmetry, the integral
from the conduction band bottom to the Fermi level µ in the conduction band is equal to minus integral
from the valence band top to the Fermi level −µ in the valence band. This allows us to write the total
Hall conductivity in a following way:

σxy = σ0
xy − ∆σxy (8)

The term σ0
xy is independent of the Fermi level position (the contribution from the fully occupied valence

band) while ∆σxy is Fermi level dependent.

Figure 2: The term ∆σxy as a function of the parameter ∆ and impurity (hole) concentration N . The other parameters are as in

Fig.1.

Since the valence band in the Dirac model assumed here is not bounded from the bottom, we have to
impose some cut-off band edge to calculate σ0

xy. The corresponding contribution from the whole valence
band depends on the assumed band width W . It also depends on the parameter ∆ for a particular
value of W .

Figure 3: Contribution σ0
xy to the Hall conductivity as a function of the parameter ∆ and band width W . The other parameters are

as in Fig.1.

Experimental results

In Fig. 4 we present the temperature dependence of the anomalous Hall constant in two set of ferro-
magnetic IV-VI compounds (see also Ref. [6]).

Figure 4: The temperature dependence of the anomalous Hall coefficient for semimagnetic semiconductors based on SnTe (The Curie

temperature in the range 10-20 K. The content of magnetic constituent (Mn,Er and Eu) does not exceeded 14 at.%.) and GeTe (Curie tem-

perature contained between 80 and 160 K.The content of magnetic constituent reached 38 at.%.).The transport and magnetic measurements

(up to 13 and 9 T respectively) were performed for the same set of temperatures.

The anomalous Hall coefficients were determined from the total transverse resistivity and magnetization
data by the least square root fit to the equation ρxy = R0B + µ0RSM , where B is the magnetic field,
R0 and RS are the normal and anomalous Hall coefficients, respectively, and µ0 is the permeability
constant. According to presented results, one can see that within the experimental error the anomalous
Hall coefficient does not depend on temperature.

Conclusions

Our considerations do not include impurities.It is well known that impurities can affect strongly the
part of AHE related to the the Fermi level but they do not influence the topological contribution.
Therefore we think that our findings concerning the AHE in the insulating regime (with the Fermi
level in the gap) should not depend on impurities. Besides, we can also expect the leading role of the
topological mechanism of AHE in case of doped semiconductors due to the large SO interaction in the
crystal potential whereas the impurity potential can be rather small.

As follows from our calculations, the off-diagonal conductivity does not vanish when the Fermi level
is located within the energy gap. We calculated it numerically as a certain value σ0

xy, which does not
depend on any band parameters but the magnitude of spin splitting in the valence band. In view of
the strong spin-orbit interaction, it is not possible to separate contributions from the spin up and down
states. As a result, both magnetically splitted bands contribute to σ0

xy.

Unfortunately, it was rather difficult to compare theoretical results with experiment, because the ex-
perimental curves are measured on samples with different contents of Mn. However, by extracting the
dependence of the AHE prefactor on the carrier density, we found that these dependences are qualita-
tively similar. From a qualitative comparison of the experimental and theoretical results we come to
the conclusion that the topological contribution to the AHE is not negligible, although not sufficient to
account for the experimental observations.
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