

$$
\text { STロCHASTIC SIMULATIロN } T=4-11 \mathrm{~K}
$$

| AVERAGE OF 24 EVENTS WITH SWITCHING TIME （AP Tロ P AT 96\％）ロF 6，725士ロ，ロ25NS | 1200 simulations of the Ap ta P TRANSITIUN（GRAPH WIDTH $\square, 25$ NS） | AVERAGE OF 12 EVENTS WITH SWITCHING TIME （ $P$ Tロ AP AT 96\％）aF 5，825 $\pm 0, \square 25 N S$ | 6OI SIMULATIGNS OF THE $P$ TO AP TRANSITIIGN（GRAPH WIDTH $\square, 25$ NS） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $J_{\text {AP－P }}=4,50 \times 10^{6} \mathrm{~A} / \mathrm{cm}^{2} \quad t_{\text {pulse }}=14 \mathrm{~ns}$ |  | $J_{\text {P－AP }}=1,05 \times 10^{7} \mathrm{~A} / \mathrm{cm}^{2} \quad t_{\text {pulse }}=14 \mathrm{~ns}$ |  |

## SUMMARY

－In the deterministic computations，the non－uniform current distribution model yields less erratic critical transition curves than the uniform distribution one．
－Stochastic simulations reveal that the transition is rather uniform，with only minor oscillations due to thermal fluctuations．Taking a look at the average magnetization dynamics during the switch，one can see a smooth transition with the formation of $C$ state before and after the switch．（G．Finocchio et al．；JAP 101，063914；2007）
－Comparing the stochastic simulations with the deterministic case，one can see that thermal activation clearly promotes the switching event．
－Although the proposed model still needs to be tested directly with experimental data，it is believed that it allows for more realistic simulations，specially when thermal activation is considered as well．

