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ABSTRACT

The Kondo effect is studied theoretically in the framework of the non-equilibrium
Green function formalism as well as ’Poor man’s scaling’ technique. The system under
consideration consists of a single quantum dot asymmetrically coupled to ferromagnetic
electrodes, whose magnetic moments are non-collinear. The spin-dependent density

of states and transport characteristics like differential conductance and tunneling
magnetoresistance through the system are obtained using the equation of motion
method. Numerical illustration of the mentioned quantities is presented. Moreover,
within the scaling approach the spin splitting of the dot level is discussed

and numerical illustration of the Kondo temperature for asymmetrical coupling

to the leads is presented.
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G/IODEL \

The system under consideration is a single level quantum dot attached to ferromagnetic
leads, whose magnetic moments are in general non-collinear.

The system is described by the Hamiltonian of the general form

H =) Ha+Hp+ Hr. (1)

e H, (« = L, R), describes electrons, within non-interacting approximation, in the left

and the right electrode, respectively.

HQ:ZZeakgalkﬂaakg, (2)

k B=+

e Hp, describes the dot, where €2 is the single-particle energy of the dot level, and U

stands for the Coulomb correlation parameter, which is assumed to by finite.

Hp =Y eqdhds + Unyny, (3)
o="1]

\ where n, = dl.d,. /
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e Hr is the tunneling term, which describes electron hopping between the dot and

electrodes

Hr =Y Y TaxpalsRapods +hec, (4)

ak Bo

with Th k g as a tunneling matrix elements, and R, being the relevant spin rotation

matrix R, where ¢, is the angle between the global quantization axis on the dot

and the local quantization axis in the a-th electrode

R — < cos(pa/2) —sin(¢q/2) > |
sin(¢a/2)  cos(¢a/2)

e the coupling strength is described by I'qg(€) = 27 Y, |[Taks|’d(€ — €axp) and is

assumed to be energy independent within the bandwidth extending from —D to D,

e within the bandwidth I'n g(€) = I'a g = I'a(1 % p), where p, denotes spin

polarization in the a-th electrode.

e the coupling asymmetry parameter v has been introduced via 'y, =~ I'Y, for

1 > ~ > 0, which means that system is coupled symmetrically for v = 1.
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/EQUATION OF MOTION METHOD
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e the equation of motion for the Green function of the dot G,/ (¢€)

((dold!,))

(do]dL)) = ({do,d}}) + ([do, H],dl,)),

e obtaining the retarded, advanced and lesser Green functions

Gr(a/) (6) = GJJ/(E + Z’I]), G<(€)

g0

e the self-consistent numerical calculation of nyo, no—» and G=(e)

o

“+ o0
<n0'0'> - <di—do-> = Im/ de Gjaa

de
27

+ oo
<n0—0'> — <dj-7d—0> — _2’/ _Gfaaa

e current flowing from the a-th electrode to the dot

1€

Ja:h

+ oo

%Tr
2T

Ta(G=(e) + fa(e)[G"(e) = G*()])],
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K\TUMERICAL RESULTS-NGF METHOD \
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Figure 1: Density of states of the quantum dot attached to magnetic leads in antiparallel

configuration, calculated for several asymmetry parameters v as indicated in figure. The
other parameters are: ¢ = —0.45 eV, U = 5 eV, I'y = 0.15 eV, kT = 0.002 eV,
QL = pr = 0.2 and electron band width extending from -25 eV to 25 eV. /




DOS

0.2 0.1 0 0.1
e [eV]

Figure 2: Density of states calculated for different magnetic configurations: ¢ = 0 (solid
line), ¢ = m/2 (dashed line) and ¢ = 7 (dotted line) and parameters: v = 0.1, ¢4 =
—03eV,U =5eV, 1'g =0.2eV, kgT = 0.001 eV, pr = 0.1, pr = 0.6, electron band
width extending from -25 eV to 25 eV.
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Figure 3: Differential conductance (left panel) and tunnel magnetoresistance TMR =
[Gaig (¢ = 0,¢r = 0) — Gaig (L, dr)| / |[Gaig (¢ = 0,¢r = 0)] (right panel) calculated

for parameters as in Fig.2 and for magnetic configurations as indicated in the figure.
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POOR MAN’S SCALING METHOD
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e scaling for the Anderson-like Hamiltonian (1), for the symmetrical case

(—¢r = dr = ¢ = 0/2), leads to effective spin splitting of the dot level
e = ¢ — ¢ = pAcos(6/2) log(D/D) — giu B, (9)

where BZ,; stands for external magnetic field applied along global quantization axis

e asymmetrical coupling introduced via asymmetry parameter I', =~y T'%, 1>~ >0,

(v = 1 symmetrical case)

e scaling for the Anderson-like Hamiltonian (1), for the asymmetrical case

(—¢r = dr = ¢ = 0/2), leads to effective spin splitting of the dot level

2
A —1 . - .
de = 7Tp\/cos2 6/2 + <h> sin® §/2 x In(D/D) — gup Bz, (10)

where p = pr = pr = % stands for the polarization of the lead, A = Za I'g.
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e The Kondo temperature for symmetrical case is given by formulae

arctanh(p cos(6/2)) > 7

Tk = D -
K exp ( 2p(pr + py)Jo cos(6/2)

(11)

where Jo = (A/7)(U/(|e?)(U + €%))).

e The Kondo temperature for asymmetrical case is given by formulae

arctanh(p\/cos2 0/2 + a2 sin” /2 ) (12)

Tk = Dexp —
2(pr + ,0¢)Jop\/(3082 0/2 + a2 sin® /2

with Jy defined as for symmetrical case.
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NUMERICAL RESULTS-SCALING METHOD
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Figure 4: The Kondo temperature for QD symmetrically coupled to leads vs. pcos(6/2),

fory=1,p=0.5,¢=—-02eV, D=25¢eV, A =0.1¢€V.
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Figure 5: The Kondo temperature for QD symmetrically coupled to leads vs. pcos(6/2),
fory=1,p=0.5,¢c*=-02eV,U=5¢eV, D =25¢eV.
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Figure 6: The spin splitting for QD asymmetrically coupled to leads vs. a

2

= (y —

1)/(v+1) for several indicated magnetic configurations, the other parameters are p = 0.5,
=—0.2eV,U=5¢eV, D =25¢eV.
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Figure 7: The Kondo temperature for QD asymmetrically coupled to leads vs. a?

(v —1)/(y + 1) for several indicated magnetic configurations, the other parameters are

p=05¢'=-02eV,U=5eV, D =25¢eV.
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/CONCLUSIONS-NGF METHOD \

e smearing and suppression of the Kondo peak in spin-dependent density of states for
the antiparallel magnetic configuration may be achieved introducing coupling

asymmetry.

e suppression of the Kondo resonance increases with increasing asymmetry

(decreasing y parameter).

e spin-splitting of the Kondo resonance for asymmetrical coupling is clearly visible for
all magnetic configurations and tends to decrease with changing configuration from

parallel to antiparallel one.
e this splitting is a result of non-zero exchange field occurring on the dot.

e such spin-splitting exists also for the situation of the symmetrically coupled
quantum dot when polarization of the left and right electrodes differs (pr. # pr),
due to I'n5(€) =Tap =T2(1 £ pa)

e the Kondo peaks in differential conductance are asymmetrical with respect to the

\ bias reversal, this asymmetry is also visible in TMR /
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CONCLUSIONS-SCALING METHOD

e the Kondo temperature goes to zero when p — 1 and magnetic configurations tends
to parallel alignment

e for parallel magnetic configuration (@ = 0) spin splitting is maximal and does not

depend on asymmetry parameter

e for antiparallel magnetic configuration (# = m) the spin splitting is minimal for
whole range of asymmetry parameter, but does not vanish for the case of

asymmetrical coupling

e for all non-collinear magnetic configurations as well as for antiparallel magnetic

configuration the spin splitting increases with increasing coupling asymmetry

e the coupling asymmetry reduces the Kondo temperature and moreover Kondo
temperature increases with increasing 6 angle, and reaches maximal values for the

antiparallel magnetic configuration
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