

Crystallization of CoFeB Electrodes in Magnetic Tunnel Junctions

J. Kanak¹, P. Wi niowski^{1,2}, A. Zaleski¹, W. Powro nik¹, T. Stobiecki¹, J. Cao², S. Cardoso² and P. P. Freitas² SPINSWITCH

¹Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland ²INESC Microsystems and Nanotechnologies, Rua Alves Redol, 9-1, 1000-029 Lisbon, Portugal

Т (⁰С)

Motivation		Samples structure			XRD -2	
The highest Tunnel Magneto Resistance (TMR) ratio so far repo spin valves (P-SV) junctions reaches over 600% at room temper For exchange bias spin valves (EB-SV) highest TMR is signific reaches about 360%.	orted for pseudo rature. cantly lower and bottom	top Ta 50	bottom Ta 50 MgO 13.5 CoFeB 150	top Ta 50 Ru 50 CoFeB 150 MgO 13.5	as-deposited P-SV & EB-SV	annealed @ 380 °C P-SV & EB-SV
In this work we report on the crystallization asymmetry of a amorphous CoFeB electrodes in P-SV and EB-SV junctions.	top and bottom Ta 50 MgO 13.5 CoFeB 150 Ta 30 Ru 180	Ru 50 CoFeB 150 MgO 13.5 CoFeB 30 Ta 30 Ru 180	Ru 9 CoFe 20 PtMn 200 Ta 30 Ru 180	CoFeB 30 Ru 9 CoFe 20 PtMn 200 Ta 30 Ru 180	Intensity (counts) a (220) a (220) a (220) Brithfit((222) Brithfit((222)) Brithfit((2	Differsity (counts) Intensity (counts) Pilling (counts) Intensity (counts) Intensi
Experiment XRD high-temperature	e chamber Ta 50 Substrate	Ta 50 Substrate	Ta 50 Substrate	Ta 50 Substrate		

Samples were deposited by magnetron sputtering (Nordiko 2000 system).

The films were characterized by X-ray diffraction using X'PertMPD diffractometer Cu-anode. Surface with roughnesses were measured by AFM.

XRD -2 high-temperature in-situ measurements were performed using Anton-Paar HTK-1200 chamber.

2 (°)

– 220 ^oC

- 260 ⁰C

- 300 °C

340 °C

380 °C

420 °C

460 ^oC

500 °C

45 -

Ta bcc(110)

@2 = 38.4 °

Simulation of -2 profiles

calculation from kinematical diffraction theory

Ru layer with larger spacing of diffraction planes at the bottom and top sides of Ru layer than in the middle. Ta 5/Ru 18/Ta 3/CoFeB 15/MgO 15/CoFeB 15/Ru 5/Ta 5 20000-(C) (b) P-SV - annealed simulation <mark>ر 15000 کۆ</mark> CoFeB

(a)

sity (a.u.)

0.4-

Conclusions

In the Ta/Ru/Ta buffer layer system the bottom Ta layer was amorphous, Ru was strongly textured in [002] direction and the top Ta layer was crystalline and smoothed the Ru layer. PtMn layer in EB-SV sample was strongly textured and transformed after annealing from paramagnetic fcc(111) to antiferromagnetic fct(111) phase. Textured growth of PtMn induced high roughness.

The amorphous CoFeB layers crystallized after annealing to bcc (200)- or (110)-oriented texture depending on material of underlayer. In both EB-SV and P-SV junctions crystallization of CoFeB in (200)-oriented texture was stronger for the top than for the bottom layer. The bottom CoFeB layer in P-SV crystallized better in (200)-oriented texture than in EB-SV.

It was found that CoFeB, deposited on thin 9 Å Ru underlayer, crystallized predominantly in direction [110] of bcc CoFe and weakly in [200]. The replacement of thin Ru layer by MgO 8Å gave rise to crystallization in (200)-oriented texture. Ta and PtMn as underlayer caused crystallization of CoFeB in (200)-oriented texture. CoFe as underlayer gave rise to crystallization of CoFeB in a highly (110)-oriented texture.

In conclusion we can say that the same crystallographic orientations of CoFeB electrodes and MgO (100) barrier in the case of P-SV junction is the reason for significantly higher TMR ratio of P-SV than of EB-SV.

Acknowledgments: Financial support by the MRTN-CT-2006-035327(SPINSWITCH).

