VERWEY TRANSITION IN Fe₃O₄ THIN FILMS: EFFECT OF SUBSTRATE TEMPERATURE

M. Bohra^{1,2}, S. Prasad², N. Venkataramani²
¹LSG2M, UMR 7584 CNRS-INPL Ecole des Mines, F-54042 Nancy, France
²IIT-Bombay, India

Fe₃O₄ with spinel structure is a promising material for spintronic devices because of its half metallic nature and high Curie temperature of 853 K. Additionally, Fe₃O₄ shows curious metal-insulator transition at temperature of $T_v = 120$ K, named as Verwey transition, where magnetite transforms from cubic to monoclinic crystal structure due to freezing of electron hopping. [1-3] Observation of the Verwey transition by means of magnetic study is an interesting way to deduce the purity of films since this transition is signature of Fe₃O₄. Fe₃O₄ thin films were deposited by PLD at various substrate temperatures (T_s) on fused quartz substrates. The study showed that the substrate temperature play an important role in determining the composition and structural properties of the films. Films with $(\ell\ell 0)$ and $(\ell\ell\ell)$ orientations could be achived by varying T_s. The $4\pi M_s$ value does not show monotonous increase with T_s but goes through a maximum value for T_s of 350° C. Temperature dependence of magnetization (M-T) study shows that, as T_s increases from RT to 850° C, the position of Verwey transition temperature changes from 70 K to 120 K and then to spread over a wider temperature range. This raises the possibility of controlling the properties in Fe₃O₄ films by varying the T_s and higher T_s is essential for the application to spin-electronics device. The origin of the Verwey transition and its shift will be discussed on the basis of these results.

- [1] A. Yanase, K. Siratori, J. Phys. Soc. Jap. **53**, 312 (1984)
- [2] G.Hu and Y.Suzuki, Phys. Rev. Lett. **89**, 276601 (2002)
- [3] L. R. Bickford, Jr., Rev. Mod. Phys. 25, 75 (1953)