

Spin waves in magnetic rings: linear and nonlinear properties, non-local damping

Burkard Hillebrands

Department of Physics and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany

SPINSWITCH workshop on spin momentum transfer Kraków, Poland, 3-5 September 2008

Coherent dynamics: spin waves

Landau-Lifshitz torque equation

SPINSWITCH

Content

BACKGROUND

- linear: spin waves in small magnetic stripe with domain wall
- linear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Coworkers

S. Hermsdörfer, B. Leven, B. Obry, C. Sandweg, S. Schäfer, H. Schultheiss

TU Kaiserslautern

A.N. Slavin Dept. of Physics, Oakland University, Rochester, Michigan

J. Chapman University of Glasgow

Content

BACKGROUND

- Inear: spin waves in small magnetic stripe with domain wall
- linear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Spin waves

Two types of energy contributions

- exchange energy:
 - generated by twist of neighbored spins
- dipolar energy:
 - generated by magnetic poles in long-wavelength spin waves

Wavevector q:

 $q_{\rm parallel}$ defined by input frequency and dispersion

Dispersion shifted vertically by change in magnetic field

Motion of a spin wave packet in varying field

Brillouin light scattering (BLS) process

= inelastic scattering of photons from spin waves

Content

BACKGROUND

- linear: spin waves in small magnetic stripe with domain wall
- Inear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Ni₈₁Fe₁₉ nanostripes

- Nucleation of a domain at protuberance applying a field sequence
- Observation of thermal spin waves
- Experiment: BLS spectra measured along a line indicated by the red dots, focus diameter 250 nm

OOMMF simulations:

Lorenz microscopy

Comparison to OOMMF simulation:

in cooperation with J. Chapman group, Glasgow

Technique: BLS Microscopy

- optical resolution: 250nm
- 2D piezo stage
- controlling sample while measuring
- frequency range: 1GHz – 1THz
- spectral resolution: 200MHz
- position stability: infinite
- accuracy: better than 20nm
- high reproducibility

SPINSWITCH

BLS Microscopy - experimental setup

SPINSWITCH workshop "Spin momentum transfer" – Kraków – September 3, 2008

SPINSWITCH

Typical microfocus BLS spectrum

Measurement procedure

SPINSWITCH

Ni₈₁Fe₁₉ nanostripes: thermal spectrum

Thermal spin wave spectrum...

C. W. Sandweg et al., J. Phys. D 41, 164008 (2008)

SPINSWITCH workshop "Spin momentum transfer" – Kraków – September 3, 2008

SPINSWITCH

Ni₈₁Fe₁₉ nanostripes: thermal spectrum

Content

BACKGROUND

- Inear: spin waves in small magnetic stripe with domain wall
- linear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Magnetization configurations in ring

Vortex State

- rotational symmetry
- flux closure state
- no dipolar stray fields

- broken symmetry
- effective surface charges at the poles
- strongly inhomogeneous internal field distribution

Magnetization configurations in ring

For spin wave propagation important:

relative direction of wavevector and local field

Spin wave quantization effects

- longitudinal/azimuthal quantization
- Iong wavelength
- negative frequency dispersion (local wavevector parallel to internal field)
- axial/radial quantization
- short wavelength
- positive frequency dispersion (local wavevector perpendicular to internal field)
- localization in spin-wave wells or domain walls
- exchange dominated

Onion State: magnetic field distribution

Inhomogeneity and gradient of internal field distribution can be controlled by

- geometry (diameter, width)
- external applied field

Calculated distribution of the internal field (OOMMF)

Dynamics in the onion state

Fully coherent spin-wave eigenmode:

 frequency must be identical across structure

$$\nu_0\left(k\right) = \frac{\gamma}{2\pi} \sqrt{\left(H + \lambda_{ex}k^2\right) \left(H + \lambda_{ex}k^2 + 4\pi M_S F_{00}\left(k_{\parallel}d\right)\right)}$$

constant for eigenmodes changing with position free parameter

 quantization condition (phase quantization):

$$\Delta \Phi = \int_{0}^{2\pi} k[H(\alpha), \nu] \ d\alpha = 2n\pi$$

SPINSWITCH

Spin waves in onion state

Spin waves in onion state: diameter variation

Partial decoherence of spin waves in onion state

2 regions with characteristic behavior of spin-wave frequencies

- narrow region with
 constant frequencies
 in azimuthal direction
 and small frequency
 gaps
- clear resonances for each position – but continuous variation of frequencies in azimuthal direction

SPINSWITCH

H. Schultheiss et al, PRL **100**, 047204 (2008)

Spin waves trapped in the pole regions of the onion state

Spin-wave wells in the pole regions (0° and 180°) due to the inhomogeneity of internal field

SPINSWITCH

- for increasing field the spin-wave dispersion is lifted to higher frequencies
- e.g. for the lowest observed spin wave mode at 4.66 GHz there is no possible wavevector for fields over 326 Oe

spin wave trapped

in a spin wave well

Spin waves trapped in the pole regions of the onion state

Applying this model yields correct frequencies for spin waves...

- pinned at ring boundaries
- quantized in azimuthal direction perpendicular to magnetization

Partial decoherence of spin waves in onion state

Continuous frequency variation as a function of position only possible for partial decoherence in azimuthal direction

Model: Approximation of each ring element with an infinite extended stripe

- only quantization in radial direction
- taking into account the continuous change of magnetization direction with respect to the radius
- using the corresponding value for the internal magnetic field at each position of the ring structure
- zero wavevector in azimuthal direction

Partial decoherence of spin waves in onion state

The model describes quantitatively

- frequency variation in azimuthal direction
- frequency separation of all modes

Spin waves in onion state: Comparison with OOMMF simulations

Duration of the pulse: $\Delta t_{pulse} = 10 \text{ ps}$

Material parameters: $M_s = 650 \text{ G}$ $A = 1.60 \cdot 10^{-6} \text{ erg} \cdot \text{cm}^2$ $g = 1.76 \cdot 10^{-2} \text{ GHz/Oe}$

H. Schultheiss et al, PRL 100, 047204 (2008)

SPINSWITCH workshop "Spin momentum transfer" – Kraków – September 3, 2008

SPINSWITCH

Content

BACKGROUND

- Inear: spin waves in small magnetic stripe with domain wall
- Inear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Space and time resolved BLS

Spin waves in magnetic rings: sample geometry

Spin waves in magnetic rings Magnetic rings in the onion state

0°, 180°

 Easy initialization of the onion state with H_{static}

 Pure in-plane RF excitation field

 Most efficient excitation in the pole and equator regions

SPINSWITCH workshop "Spin momentum transfer" – Kraków – September 3, 2008

90°, 270°

"FMR"-type BLS

spin wave amplitude (BLS intensity) as a function of applied RF-frequency

- Low frequency excitations at the pole
 P₁, P₂ and P₃
- High frequency excitations at the equator E₁ and E₂

H. Schultheiss et al, J. Phys. D 41, 164017 (2008)

SPINSWITCH

Spin waves in magnetic rings

- P₁, P₂ and P₃ are strongly confined to the pole regions
- E_1 and E_2 are located at the equator and show maxima in azimuthal direction
- Decrease in frequency for higher-order mode numbers at the equator

Spin waves in magnetic rings: time-resolved BLS

- Resonant excitation of the "quasi-eigenmodes" P₁, P₂ and P₃
- Exponential decay of the amplitudes after the RF-pulse

$$\sim e^{-\frac{t}{\tau}}$$

 Increased lifetime for smaller frequency

Spin waves in magnetic rings Dissipation of "quasi-eigenmodes"

- Decay constant decreases for increasing frequency at a fixed position
- BUT: lifetime different for polar and equatorial region

Dissipation channels within the spin system are modified due to:

SPINSWITCH

- modified internal magnetic field (magnitude and direction)
- quantization conditions

H. Schultheiss et al, J. Phys. D 41, 164017 (2008)

Content

BACKGROUND

- Inear: spin waves in small magnetic stripe with domain wall
- Inear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Coupling mechanisms of "quasi-eigenmodes" in rings

What are the possible mechanisms of energy transfer?

MAGNON - MAGNON - SCATTERING

"FMR"-type BLS

frequency sweep to determine the resonance excitation

"FMR"-type BLS

frequency sweep to determine the resonance excitation

"FMR"-type BLS

frequency sweep to determine the resonance excitation

"FMR"-type BLS

frequency sweep to determine the resonance excitation

diameter ____

Coupling strength dependence on equator mode intensity

ring diameter 1 µm:

- small FMR-resonance signal at both pole and equator
- small equator to pole signal ratio

ring diameter 3 µm:

- large FMR-resonance signals
- large equator to pole signal ratio

Content

BACKGROUND

- Inear: spin waves in small magnetic stripe with domain wall
- Inear: spin waves in rings partial coherence effects
- damping properties of spin waves
- nonlinear: mode coupling of spin waves in rings

OUTLOOK & SUMMARY

Outlook - where will we go ?

Magnon gases:

- Magnons: Quanta of spin waves
- Interaction can be tuned to four-magnon interaction only (2 magnons in ⇒ 2 magnons out)
 - ➔ magnons form gas of interacting quasiparticles
- Injection of magnons via parametric pumping

Issues:

- Correlation effects and instabilities in magnon gases
- parametrically stimulated coherent interactions
- magnon condensates

Outlook: dynamics of parametric amplification from thermal bath

Scheme of experiment:

Light elastically scattered by the pumping transducer plays the role of an optic probe.

BLS spectrum of magnon modes

Decay dynamics of magnon modes

