

- Motivation: Physics & Applications
- Head-to-head domain wall spin structures
- Behaviour of domain walls at constrictions (pinning sites)
- Spin Torque Theory and simulations of CIDM
- Observation of CIDM in different materials (velocities, etc...)
- Current-induced domain wall quasiparticle excitations
- Magnetic Shift Register Device

1. Domain walls & currents – exciting physics & applications

2. Head-to-head Domain Walls - Experiment

Co Rings, D=1.7µm; W=0.4 µm, 0.25 µm; t=34 nm; Spin-SEM & Electron holography

M. Eltschka, MK et al., Appl. Phys. Lett. 92, 222508 (2008)

¹M. Kläui et al., PRB **68**, 134426 (2003); PRL **86**, 1098 (2001), APL **84**, 951 (2004); APL **86**, 32504 (2005);

- Zig-zag permalloy (Ni₈₀Fe₂₀) wires with variable geometries are used.
- Depending on the geometry, vortex or transverse walls are present
- Zig-zag wires allow one to generate head-to-head domain walls at the kinks by applying the field in the direction indicated by the arrow.
- The magnetization is pointing in opposite directions in adjacent branches of the wire.
- The kinks are ¼ ring elements with a radius >> wire width (wires magnetically smooth).

M. Kläui et al., APL 88, 232507 (2006); PRL 94, 106601 (2005)

W=300nm; 60µm long; t=27nm Py, Spin-SEM measurement M. Kläui et al., PRL **95**, 026601 (2005), P.-O. Jubert, M. Kläui et al. JAP **99,** 08G523 (2006);

- Depinning field is strongly reduced for certain μ-wave frequencies (resonance).
- TW has higher resonance frequency than VW; Narrow dip \rightarrow high Q-factor.

• Mixing of AC current (with frequency $f=\omega$) and resistance change ΔR (with $f=\omega$): \rightarrow DC signal (and 2ω).

- Homodyne detection (DC signal): $U_{DC} = I_{AC} * \Delta R * \cos(\varphi)$ with φ the phase shift.¹
- For an undamped oscillation $\varphi(\omega)=90^{\circ}$ at resonance \rightarrow dispersion-like signal.
- For TW asymmetric dip ($\varphi \neq 90^{\circ}$ at $\omega = \omega_{res}$ due to asymmetric potential or damping). \rightarrow Independent check of the resonant frequencies possible (at variable fields!)

¹D. Bedau, M. Kläui et al., PRL **99**, 146601 (2007); R. Moriya et al., Nature Phys. **5**, 368 (2008)

- Using current pulses with alternating polarity, the vortex core can be moved perpendicular to the current reproducibly between two positions.²
- The direction depends on the vortex core polarity.
- The displacement direction and the total displacement is in agreement with theoretical predictions.¹

¹H. Kohno et al., JMMM **310**, 2020 ('07); ²L. Heyne, MK et al., PRL **100**, 66603 ('08); ³APL **92**, 112502 ('08)