

Spin transfer torque and thermally assisted FMR in magnetic tunnel junctions

C. Baraduc

S. Petit, N. de Mestier, C. Thirion, Y. Liu, M. Li, P. Wang, B. Diény

- Introduction to spin transfer torque (STT)
 - longitudinal (in-plane) torque
 - transverse (out-of-plane) torque
 - phase diagram
- Influence of STT on magnetic fluctuations
 - Model

CENTRE NATIONAL DE LA RECHERCHE

GrensbleikP

- Experimental result

Spin polarized current

Interaction magnetization-current

Inter Longitudinal (in-plane) spin transfer torque

Microscopic picture

Spintec Microscopic picture (2)

Classical dephasing \rightarrow transverse component is transferred

œ

SPINSWITCH 2008

Spintec Transverse (out of plane) torque

Inter-layer coupling energy
$$E = J_{ex} \vec{M}_1 \cdot \vec{M}_2$$

Equivalent to a field in the direction of the magnetization of the other layer $\vec{H}_1 = -\partial E / \partial \vec{M}_1 \propto \vec{M}_2$

Equivalent to a torque

CENTRE NATIONAL DE LA RECHERCHE

Grenshie

$$\vec{T}_{\perp} \propto \vec{M}_1 \times \vec{M}_2$$

$$\vec{T}_{\perp} = \gamma_0 b_j \vec{M} \times \vec{p}$$

SPINSWITCH 2008

C. Baraduc

 F_2

Microscopic picture

Magnetization dynamics

Phase diagram

Stiles and Miltat, Spin Dynamics in Confined Magnetic Structures III, 225-308, (2006)

CENTRE NATIONAL DE LA RECHERCIE SCENTURQUE

œ

SPINSWITCH 2008

STT at equilibrium

Influence of STT on mag. fluctuations

- -Linear regime
- -Stabilizing/Destabilizing torque

TMR Read-heads:

SPINSWITCH 2008

$$\vec{H}$$

$$\vec{X}$$

$$\begin{aligned} \frac{d\vec{M}}{dt} &= -\gamma_0 \quad \vec{M} \times \left(\vec{H}_{eff} + \vec{\delta}\vec{h}_T\right) + \frac{\alpha}{Ms}\vec{M} \times \frac{d\vec{M}}{dt} \\ &+ \frac{\gamma_0 \quad a_J}{Ms}\vec{M} \times (\vec{M} \times \hat{p}) + \gamma_0 \quad b_J\vec{M} \times \hat{p} \\ &\text{Spin torque T//} \qquad T \bot \end{aligned}$$

Fluctuation-dissipation theorem gives the magnetization Power Spectral Density (PSD) :

CENTRE NATIONAL DE LA RECHERCIE SCENTIDIQUE

GrensbleikP

œ

$$S_{M_y} = \frac{4kT \chi'_{yy}}{\mu_0 V \omega}$$

œ

CENTRE NATIONAL DE LA RECHERCHE JNIVERSITE OSEPH FOURIER

Model predictions

$$\omega_0^2 \approx \gamma_0^2 \left[H(4\pi Ms + H) - (4\pi Ms + 2H) b_j \varepsilon \right]$$

$$\Lambda = \gamma_0 \alpha (2H + 4\pi M_s) - \gamma_0 2a_j \varepsilon \qquad \varepsilon = 1 \text{ (P)}$$

ε = -1 (AP)

From δm to δV

How to access experimentally to the magnetization fluctuations spectrum?

Experimental setup

Influence of STT on noise

Pintec Peak Linewidth \rightarrow longitudinal torque a_i

- Longitudinal (in-plane) STT: direct transfer of electron momentum → a_i
- Transverse (out-of-plane) STT: field-like term (exchange coupling) → b_i
- **STT at equilibrium:** effect on magnetization fluctuations (noise)
- Stabilizing and destabilizing torque can be measured: extract a_j and b_j
- Voltage more relevant than current for STT in magnetic tunnel junctions. Polarized current directly related to the voltage.

Petit et al., PRL 98, 077203 (2007)

CENTRE NATIONAL DE LA RECHERCIE

Grensble