

In-Situ Lorentz Microscopy Studies of Vortex Domain Walls in Nanowires Containing Pinning Potentials

M Basith

Stephen McVitie Damien McGrouther John Chapman

Department of Physics and Astronomy University of Glasgow, UK

- a. Fabrication of nominally identical nanowires by EBL and FIB
- b. Formation of domain walls in nanowires
- c. Domain wall propagation process by applying magnetic field
- d. Influence of edge effect on DWs spin structures

Importance

Domain walls as carrier of information

Two proposed applications are:

- 1. Magnetic logic device, and
- 2. Magnetic race track memory device.

Important to understand

- a. domain wall propagation process along the nanowires
- b. controlled pinning and de-pinning of DWs

Structure of the nanowires

Permalloy thickness: 20 nm Width of the anti-notch: 300 nm Height of the anti-notch: 150 nm

400 nm

SP \downarrow N S W \uparrow T C H Workshop "Spin Momentum Transfer", Krakow 3-5 September 2008

Phase diagram

[1] Nakatani et al., J. Magn. Magn. Mater. 290-291, 750 (2005)

Physical characterization: TEM bright field images

Magnetic characterizations: LTEM

Formation of domain wall

Magnetic characterizations: LTEM

Formation of domain wall

Magnetic behavior of DWs

b. 12 Oe

c. 31 Oe

d. -42 Oe

FIB patterned nanowire EBL patterned nanowire a. 0 Oe a. 0 Oe 722 • • b. 17 Oe The * * c. 44 Oe Image from simulation d. 52 Oe

Domain structure inside the anti-notch

Summary

Estimated edge effect using TEM BF imaging

-for the e-beam patterned nanowires around 3~8 nm

-for the FIB patterning nanowires around 20~25 nm

Domain structure inside the anti-notch was varied in the case of FIB milling nanowires

SSP members, University of Glasgow Glasgow University and ORSAS

Summary

Table : Propagation field, de-pinning field and potential characteristics of pinning sites

Wires	Propagation field (Oe)				De-pinning field (Oe)				Potential Characteristics			
	CCW		CW		CCW		CW		CCW		CW	
	EBL	FIB	EBL	FIB	EBL	FIB	EBL	FIB	EBL	FIB	EBL	FIB
I	17	12	18	17	52	42	39	4 4	\cap	U	U	U
п	14	22	14	18	36	42	52	42	U	U	\cap	\cap
ш	22	23	17	20	52	44	42	44				

 \frown Potential barrier \cup Potential well