Domain wall configurations in multilayered rings

Sponsored by NERC INDEX, NSF, Singapore-MIT alliance
F. J. Castaño, B. G. Ng, C. Nam, C. A. Ross

Massachusetts Institute of Technology
$5 \mu \mathrm{~m}$

Outline

© Introduction
○ NiFe/Cu/Co and NiFe/Cu/Co/IrMn elliptical and rhombic rings
© Magneto-resistance response
\bigcirc 4-point measurements
○ Wheatstone bridge configuration
\bigcirc Micromagnetic modeling
© Current-induced switching
\bigcirc Multi-bit storage and logic operation
\bigcirc Summary

Introduction. MRAMs

○ Magnetic Random Access Memories.

Field-induced write Freescale (2006). MR2A16A-4Mb 1T/1MTJ 3.3V memory on $0.18 \mu \mathrm{~m}$ CMOS, 35ns access time, $\sim 10 \mathrm{~mA}$ write current. $1.5 \mu \mathrm{~m}^{2}$ cell size, MTJ.

Current-induced write. Hitachi (2008). 2Mb 1T/1MTJ 1.8V memory on $0.18 \mu \mathrm{~m}$ CMOS, 40 ns access time, ~ 200 μ A write current. $1.6 \times 1.6 \mu \mathrm{~m}^{2}$ cell size.

Introduction. Single-layer magnetic rings

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Introduction. Magnetic rings

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Multilayered elliptical and rhombic ring devices

○ Shape anisotropy. Controlled positioning of domain walls.
© Elliptical and rhombic layered rings. NiFe/Cu/Co (Pseudo-spin-valve) NiFe/Cu/Co/IrMn (Spin-valve)
© Fabricated Devices. Long axis $900 \mathrm{~nm}-5 \mu \mathrm{~m}$ Widths 80nm-350nm
Modest GMR up to 3.5\%
© Magneto-transport response using an in-plane magnetic fields and different contact configurations.
\bigcirc Micromagnetic modeling. Understand magnetization reversal and address scalability for both elliptical and rhombic rings.

Long axis $150 \mathrm{~nm}-2 \mu \mathrm{~m}$ Widths 20nm-120nm

Magneto-resistance response

\bigcirc Wheatstone bridge. $\mathrm{V}_{12} / \mathrm{I}$

$$
\frac{V_{13}}{I}=\frac{R_{2}^{A}}{R_{1}+R_{2}^{A}+R_{2}^{B}} V_{S}+C
$$

$$
V_{S}=I_{S} \frac{\left(R_{1}+R_{2}^{A}+R_{2}^{B}\right)\left(R_{3}+R_{4}\right)}{R_{1}+R_{2}^{A}+R_{2}^{B}+R_{3}+R_{4}}
$$

$$
\frac{V_{12}}{I}=\left|\frac{R_{4}}{R_{3}+R_{4}}-\frac{R_{2}^{A}+R_{2}^{B}}{R_{1}+R_{2}^{A}+R_{2}^{B}}\right| \cdot\left(V_{S}+C\right)
$$

\bigcirc WB is sensitive to small differences in resistance between the arms of the bridge.

4-point measurements. Major loops

Spinswitch workshop, $4^{\text {th }}$ Sep 08

4-point measurements. Minor loops

\bigcirc Cycling soft NiFe rings when Co rings are in bi-domain ('onion').
\bigcirc Significant magnetostatic interactions due to the presence of domain walls in each ring.

○ Three distinct remanent resistance levels

4-point measurements. Minor loops

\bigcirc Cycling soft NiFe rings with Co rings in a vortex configurations.

NiFe

○ Weak magnetostatic interactions

4-point measurements. Spin-valve rings

○ NiFe/Cu/Co/IrMn rings

○ The interplay between shape anisotropy and exchange bias allows control over the vortex chirality in the hard rings

Jung et al, PRL 2006
\bigcirc Asymmetric major loops
\bigcirc Minor loops (not shown) demonstrate that control of the chirality of the vortex in each ferromagnetic layer is possible, enabling at least 16 distinct magnetic configurations to be formed.

○ Despite similar remanence, different configurations may be distinguished using small field perturbations.

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

© Larger rings became unbalanced as the soft ring transitions into a vortex-like configuration.
© Three remanent configurations
○ Large relative resistance changes

Spinswitch workshop, 4th Sep 08

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

\square

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

Wheatstone Bridge. NiFe/Cu/Co elliptical rings

Wheatstone Bridge. NiFe/Cu/Co rings. Modeling

© Similar magnetization reversal down to 150nm-long, 20nm-wide rings.

Wheatstone Bridge measurements. Elliptical rings

○ Soft layer reversal paths

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Elliptical rings. Soft ring phase diagram

© Magnetic reversal not as simple as in single layers
\bigcirc Soft layer
New reversal mechanism resulting from strong magnetostatic coupling due to the presence of domain walls in each of the rings
Reversal with 6 domain walls

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Rhombic rings. 4-point measurements

\bigcirc Measuring resistance using $\mathrm{V}_{13} /$ I.
\bigcirc Significantly lower switching fields for the soft and hard layers, compared with similar elliptical/circular rings.

○ Both layers reverse in fields below 200 Oe for both axis of the device.

Field (Oe)

Rhombic rings. Wheatstone bridge measurements

\bigcirc WB is a true differential measurement
© WB became unbalanced both as the soft ring reverses and as the hard ring switches into a vortex configuration

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Rhombic rings. Soft ring reversal

\bigcirc Similar switching to elliptical multi-layered rings

Simulation

Mechanism

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Rhombic rings. Hard ring reversal

\bigcirc Formation of 4 reverse domains
\bigcirc Much more controllable than elliptical rings

Spinswitch workshop, 4 ${ }^{\text {th }}$ Sep 08

Rhombic rings. Hard ring reversal

© Different symmetric behavior based on cycling from a saturated state (50000e) and an unsaturated (4000e) state
© Unsaturated cycling shows an intermediate state

© Evidence for the existence of stable 360° walls in the hard layer.

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Current-induced switching. Multilayered rings

Current-induced switching. Multilayered rings

The same ring can be switched by a current pulse: with or without a bias field

Critical current density $3 \times 10^{7} \mathrm{~A} / \mathrm{cm}^{2}$

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Device applications. Storage

\bigcirc 4-point measurements.
Different switching of the soft layer depending on the hard ring configurations. Interplay between shape anisotropy, contact arrangement and field direction. Up to 16 distinct remanece states for spin-valve rings
© Wheatstone bridge

Unbalanced for vortex-like configurations in each ring. Lower switching fields.
1-bit storage
Cycling at fields of $\pm 30 \mathrm{Oe}$
2-bit storage
Cycling at $\pm 180 \mathrm{Oe}$, then $\pm 30 \mathrm{Oe}$

Spinswitch workshop, $4^{\text {th }}$ Sep 08

Device applications. Logic

Output " 0 "

500 nm ।-

$\bigcirc 1^{\text {st }}$ operation mode. Gate programming step, logic input step and logic read step.

Ney et at, Nature 2003 Gate function needs to be reset using another ± 30 Oe programming step
$\bigcirc 2^{\text {st }}$ operation mode. Does not require reprogramming after each operation. Takes advantage of reversible, non-hysteretic movement of DW along the length of the ring at low fields

Summary

© $\mathrm{NiFe} / \mathrm{Cu} / \mathrm{Co} / \mathrm{Au}$ and $\mathrm{NiFe} / \mathrm{Cu} / \mathrm{Cu} / \mathrm{IrMn} / \mathrm{Au}$ elliptical and rhombic rings display intermediate configurations on reversing both the soft (NiFe) and hard (Co) rings.

○ These devices show a rich variety of stable and metastable magnetic states that can be accessed by field cycling at modest amplitude and/or by current-induced switching.

○ Multiple remanent resistance levels and different switching behavior of the free layer depending on hard layer state. More than one-bit-per-cell in storage applications.
© Wheatstone bridge configurations allow additional insights on the magnetization reversal and provide for magneto-logic devices with improved functionality.

