

RAITH150

30 nm Magnetic Tunnel Junction Fabrication

Overview and Applications

INESC MN *Microsistemas e Nanotecnologias*

<u>Rita Macedo</u>, R. Ferreira, S. Cardoso, P. P. Freitas

Produce MTJ with low

Resistance Area product (*RxA*)

Spin Transfer MRAM

Challenges

• Reduce cell size

- Beam Energy
- Electron Interaction Phenomena
- Resist Process

Strategy

- Use low-energy electron beam
 - Reduce the exposure dose
 - Avoid radiation damage caused by high energy electrons
 - E-Beam tool used is RAITH 150
- Reduce thickness of e-beam resist
 - Reduce electron interaction

	Electron Beam Resists					
Beam Energy	PMMA	ZEP-520	AR- 7520.18			
100 kV	10 nm	10 nm	n.a			
10-20 kV	20 nm	25 nm	60 nm			
Other Properties	 Positive Low Sensitivity 	 Positive High Sensitivity Good etch resistance 	 Negative High Sensitivity Good etch resistance 			

E-Beam @ INESC-MN Raith 150

- Direct Writing and SEM system
- Thermal assisted field emission
- Acceleration Voltage: 100V-30kV
- Probe Current Range: 5 pA-20 nA
- Beam Size: 2 nm @ 30 KeV
- Lithography Resolution: ~ 20 nm

Decrease Resist Thickness

Study different Dilutions of AR-7520

• Solvent used is AR 300-12

Reduce Cell Size AR-7520.18 Optimization

Critical Issues for the Electron Beam Resist

dose	(µC/cm ²)	(logarithmic	scale))
------	-----------------------	--------------	--------	---

0.4 A/s of etch rate allows		E-Beam Resist AR-7520.18			PMMA	Laser
a safe working regime for processimg.		A (1:1)	B (1:2)	C (1:3)		PFR7790
	70º incidence	0.7 A/s	0.6 A/s	0.4 A/s	1.0 A/s	1.4 A.s

Reduce Cell Size Results

7/18

Dimensions Measured (nm)

Low RxA MTJ Ion Milling Deposition

Challenges

Produce MTJ with low
 Resistance Area product (RxA)

Achievements

MgO-based MTJs are prepared by Ion beam assisted deposition (IBD)

- IBD system in a Nordiko 3600 tool
 - Base Pressure: 6x10⁻⁸ Torr
 - An assist beam is used for MgO deposition

• Geometry used for MgO assisted deposition,

MTJ Fabrication *Introduction*

Nanofabrication Process

• How to establish contact to the top electrode of the nano-sized pillar?

• How to avoid side-wall issues due to redeposition during etching by ion milling?

o E-Beam and etching by ion milling to define the pillar

o Chemical-Mechanical (CMP) to planarize the insulator layer and to open a top contact to the pillar

MTJ Fabrication Nanofabrication Steps III

Chemical Mechanical Polishing

MTJ Fabrication Nanofabrication Steps IV

11/14

Advantages

- Very adaptable polishing machine
 - o 1" samples, 3" wafers
 - o different slurries can be used
- Portable
- Small polishing time steps

Disadvantages

- Uniformity problems
- Polishing rate difficult to calibrate
- Process control not optimized

Extra Oxide Deposition

B.E borders protected by extra Al₂O₃ Al₂O₃ Al₂O₃ B.E borders After extra oxide deposition

+Al₂O₃: Removed from the top of the pads after liftoff

MTJ Fabrication Nanofabrication Steps V

6

Vias Opening

MTJ Fabrication *Results*

Measurements

 Several devices were fabricated using this process and measured

 Samples were annealed

• 1h @ 320 °C

Cooling under field (*1 Tesla*)

 A four-probe geometry was used

MTJ Fabrication *Results*

Low resistance devices are suitable for current induced switching

Magnetic effect

- Switching currents depend on applied magnetic field
- Full magnetization reversal
 - Same ΔR as in a transfer curve

Current density still large

- Critical current of 2.6x10⁷ A/cm²
- Should improve with higher TMR (current polarization)

Conclusions Future Work

Achievements

 A new nanofabrication process was developed and sucessully tested

• A negative resist (AR-7520.18) was study aiming its thickness reduction

- from 200 to 80 nm
- Electron Beam lithography performance was optimized
 - Minimun resolution ~30 nm
 - Exposure dose tunned for diferent dimensions

• Low RxA MTJs (0.8-50 Ω .m²) with reasonable TMR signals were fabricated

- Minimun size integrated ~50x180nm
- Spin Transfer Measurements were done
 - Current induced switching observed for a critical current ~2.6x10⁷ A/cm²

Future Work

Optimize Chemical Mechanical Polishing
 Process aiming higher yield values

- Nanofabrication process of pillars of ~30nm
- Improve the TMR signals of Low RxA
 MTJs

 Decrease the critical current for current induced switching

THANK YOU!!